The sine of theta is given by the y-coordinate of point P:
![\sin (\theta)=(15)/(17)](https://img.qammunity.org/2023/formulas/mathematics/college/8ebw9vz8ysukse0bp7rh8nyuckad00qjvk.png)
The cosine of theta is given by the x-coordinate of point P, so we have:
![\cos (\theta)=-(8)/(17)](https://img.qammunity.org/2023/formulas/mathematics/college/e89qxh1zgtyxelauqpebeue8up0kw5q8xr.png)
The tangent can be calculated as the sine divided by the cosine:
![\tan (\theta)=(\sin(\theta))/(\cos(\theta))=((15)/(17))/(-(8)/(17))=-(15)/(8)](https://img.qammunity.org/2023/formulas/mathematics/college/3v1ih4gwnr17ub93kgfyint8dwp5sl39q8.png)
The cosecant is the inverse of the sine:
![\csc (\theta)=(1)/(\sin (\theta))=(17)/(15)](https://img.qammunity.org/2023/formulas/mathematics/college/rclfaa6rhi4t9sstoogy5qtre64e31wuik.png)
The secant is the inverse of the cosine:
![\sec (\theta)=\frac{1}{\text{cos(}\theta)}=-(17)/(8)](https://img.qammunity.org/2023/formulas/mathematics/college/38sr3ieyvyowxai6h14f59fwsn465y49bi.png)
And the cotangent is the inverse of the tangent:
![\cot (\theta)=(1)/(\tan(\theta))=-(8)/(15)](https://img.qammunity.org/2023/formulas/mathematics/college/bbe7mx7qf5rxyyilio74gz4t8nux9z7bn9.png)