The projectile will land on the desert when h = 0, in other words
![0=-16t^2+v_0t+h_0](https://img.qammunity.org/2023/formulas/mathematics/college/m9b862jj3reghvgvr7ni8w7ul6usqab200.png)
Now, we are told that h_o = 2400ft and v_o = 400ft/s; and putting those in the formula above gives
![-16t^2+400_{}t+2400=0](https://img.qammunity.org/2023/formulas/mathematics/college/vvs1nv3e67k6vp268ziql5yweirl6ojplr.png)
Now this is a quadratic equation and the solution is given by
![\begin{gathered} ax^2+bx+c=0 \\ x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uuterq6bz1kwr2mb9jy58c523r5v4v644y.png)
In our case, a = -16, b = 400, and c = 2400; therefore, the quadratic formula above gives
![t=\frac{-400\pm\sqrt[]{400^2-4(-16)(2400)}}{2(-16)}](https://img.qammunity.org/2023/formulas/mathematics/college/phjashn2l083cmlj7yqauyk58lnil8f0f0.png)
![t=(-400\pm560)/(-32)](https://img.qammunity.org/2023/formulas/mathematics/college/d1o15q615wbnegvun6a8qwz062bo4jix8u.png)
Hence, the two solutions are
![\begin{gathered} t=30 \\ t=-5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ou8xxtv6q39sxgmunlankon8207l2ktlu8.png)
Since negative values of t have no physical significance, the valid answer is t = 30s.
Hence, the third choice in the column is the right answer.