we know that
A=110 degrees
B =27 degrees
c=6
step 1
Find out the measure of angle C
Remember that
The sum of the interior angles in any triangle must be equal to 180 degrees
so
A+B+C=180 degrees
substitute given values
110+27+C=180
137+C=180
C=180-137
C=43 degrees
step 2
Find out the length side a
Applying the law of sines

substitute given values

solve for a

step 3
Find out the length of side b
Apply the law of sines

substitute given values

solve for b
