The test you are running is:
![\begin{gathered} H_0\colon p=0.55 \\ H_a\colon p>0.55 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4rdcnso8vyqcxzb6g90wbpxhj8o7f9xjm1.png)
Then, you have a right-tailed p-value, then:
![\begin{gathered} p-value=P(Z>z_0) \\ p-value=1-P(Z\le z_0) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nvyhlskzmh3cnhk4haakdt6pwnk3tnt6p0.png)
By replacing p-value =0.55:
![\begin{gathered} 0.55=1-P(Z\le z_0) \\ P(Z\le z_0)=1-0.55 \\ P(Z\le z_0)=0.45 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i3rwslwjdhaa3tizr4g115ck0blcw8ggu0.png)
Then, in a standard normal table look for the corresponding z:
As you can see, z=-0.12 has a p-value=0.4522 and z=-0.13 has a p-value=0.4483.
Then, the average will be:
![\begin{gathered} (0.4522+0.4483)/(2)=0.4502 \\ \text{Then the z-score is:} \\ (-0.12+(-0.13))/(2)=-0.125 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gn6fgg1m95ifnoz10twt2b8xrjbu1dg63y.png)
Answer: the test statistic z=-0.125