Given::
![\begin{gathered} \angle4=52^(\circ) \\ \angle6=90^(\circ) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o5y2lb36oy6l7pmrpoqbffh74lkc2td72u.png)
First, we find:
![\angle3\text{ and }\angle5](https://img.qammunity.org/2023/formulas/mathematics/college/cb9ulmhtve04jzjgendpb3h9rve6a9h41f.png)
Since, the vertically opposite angles are equal.
Therefore,
![\begin{gathered} \angle3=\angle6 \\ \therefore\angle3=90^(\circ) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/soroi6rrcstc98rxdb2u6ygmlbeuiblce4.png)
Next to find the angle of 5:
We have,
![\begin{gathered} \angle1=\angle4 \\ \therefore\angle1=52^(\circ) \\ \angle3=90^(\circ) \\ \angle4=52^(\circ) \\ \angle6=90^(\circ) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9um656sja1w8rdyqim0lx163ila6q2gamf.png)
Since the angle of 2 and 5 are vertical angles and we know that the central angle is 360.
So that,
![\begin{gathered} \angle1+\angle2+\angle3+\angle4+\angle5+\angle6=360 \\ 52^(\circ)+\angle2+90^(\circ)+52^(\circ)+\angle5+90^(\circ)=360^(\circ) \\ \angle2+\angle5=360-284 \\ \angle5+\angle5=76 \\ 2\angle5=76 \\ \angle5=38^(\circ) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tprhvg3g019a1fcf5m33jglblh2nvh3k0e.png)
Hence, the measures of angle of 3 and 5 are,
![\angle3=90^(\circ)\text{ and }\angle5=38^(\circ)](https://img.qammunity.org/2023/formulas/mathematics/college/zbp6jgoa42vsy3997d45xawc8cwsn09jps.png)
Finally, to find the complementary pair of angle 1.
![\begin{gathered} \angle1=52^(\circ) \\ 52^(\circ)+38^(\circ)=90^(\circ) \\ \therefore\angle1+\angle2=90^(\circ) \\ \therefore\angle1+\angle5=90^(\circ) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/boe66y0597g77b55332z91wc605a550nok.png)
Hence, the two angles which are complementary to the angle of 1 is,
![\angle2\text{ and }\angle5](https://img.qammunity.org/2023/formulas/mathematics/college/hzc5n37xt9ph03krqadxs2oy3cjui6kq3q.png)