134k views
2 votes
Select the correct answer. Which equation describes the function modeled in this table? 1 -2. -1 0 1 2 3 4 6 0 0 (more 6 16 30 OA. Y O B. Y (2x - 1)(x - 1) 2(x - 1)? 2(x + 1)2 2x2 – 2 O C. y = D. y

Select the correct answer. Which equation describes the function modeled in this table-example-1
User Newb
by
8.2k points

1 Answer

6 votes

Given:-

A set of data.

To find the required equation.

So from the given equation, the equation which suits is,


y=2x^2-2

So now we prove it by substituting the values from the table.

When x=-2 we get the value as,


\begin{gathered} y=2x^2-2 \\ y=2(-2)^2-2 \\ y=2*4-2 \\ y=8-2 \\ y=6 \end{gathered}

So the value of y is 6.

When x=-1. we get,


\begin{gathered} y=2x^2-2 \\ y=2(-1)^2-2 \\ y=2*1-2 \\ y=2-2 \\ y=0 \end{gathered}

So the value of y is 0.

When x=0. we get,


\begin{gathered} y=2x^2-2 \\ y=2(0)-2 \\ y=-2 \end{gathered}

So the value of y is -2.

When x=1. we get,


\begin{gathered} y=2x^2-2 \\ y=2(1)-2 \\ y=2-2 \\ y=0 \end{gathered}

So the value of y is 0.

When x=2. we get,


\begin{gathered} y=2x^2-2 \\ y=2(2)^2-2 \\ y=2*4-2 \\ y=8-2 \\ y=6 \end{gathered}

So the value of y is 6.

When x=3. we get,


\begin{gathered} y=2x^2-2 \\ y=2(3)^2-2 \\ y=2*9-2 \\ y=18-2 \\ y=16 \end{gathered}

So the value of y is 16.

When x=4. we get,


\begin{gathered} y=2x^2-2 \\ y=2(4)^2-2 \\ y=2*16-2 \\ y=32-2 \\ y=30 \end{gathered}

So the value of y is 30.

So from this we can conclude that the correct equation is,


y=2x^2-2

User Nagendra Badiganti
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories