The balanced formula of the reaction described is:
![2KOH_((aq))+H_2SO_(4(aq))→K_2SO_(4(aq))+2H_2O_((l))](https://img.qammunity.org/2023/formulas/chemistry/college/oulhvp9jfbs3du1iquywkixctknzwprvhk.png)
To find the molar concentration (Molarity) of the solution we will follow the following steps:
1. We find the moles of KOH present in the basic solution using the molarity equation that tells us:
![Molarity=(MolesSolute)/(Lsolution)](https://img.qammunity.org/2023/formulas/chemistry/college/59921b1ol9td564eci76w4gmf4reyzqhqj.png)
![\begin{gathered} MolesSolute=Molarity* Lsolution \\ MolesSolute=0.283M*0.04318L \\ MolesSolute=0.012molKOH \end{gathered}](https://img.qammunity.org/2023/formulas/chemistry/college/zpjd67x790ja1ov2gkyzt91azl6omoncod.png)
2. From the stoichiometry of the reaction we find the moles of H2SO4 needed to neutralize the moles of KOH. The ratio H2SO4 to KOH is 1/2.
![\begin{gathered} molH_2SO_4=givenmolKOH*(1molH_2SO_4)/(2molKOH) \\ molH_2SO_4=0.012molKOH*(1molH_(2)SO_(4))/(2molKOH)=0.006molH_2SO_4 \end{gathered}](https://img.qammunity.org/2023/formulas/chemistry/college/8nx9gidfyeylibybm911lo4n21u7dxb9lf.png)
3. We find the molarity of the solution using the molarity formulation from point 1.
![\begin{gathered} Molarity=(MolesSolute)/(Lsolution) \\ Molarity=(0.006molH_2SO_4)/(0.04462L)=0.137M \end{gathered}](https://img.qammunity.org/2023/formulas/chemistry/college/9uoktu9djcyzvtqp5uookivc8fqrfoopk1.png)
Answer: The molarity or molar concentration of the acid solution is 0.137M