Answer:
The shorter leg measures 2.4 ft.
the longer leg measures 4.4 ft.
Explanation:
Let the shorter leg have length a and the longer leg have length b.
The hypotenuse has length c.
a² + b² = c²
a² + (a + 2)² = 5²
a² + a² + 4a + 4 = 25
2a² + 4a - 21 = 0
This is not factorable, so we use the quadratic formula.
Switch the variable to x. Now x is the length of the shorter leg.
2x² + 4x - 21 = 0
![x = (-b \pm √(b^2 - 4ac))/(2a)](https://img.qammunity.org/2023/formulas/mathematics/high-school/xbet91ghx33q2222ovgg3w07qdzqv1eha2.png)
![x = (-4 \pm √(4^2 - 4(2)(-21)))/(2(2))](https://img.qammunity.org/2023/formulas/mathematics/high-school/vbdpig09mtpdagd47zimorqunjtj5s0mzy.png)
![x = (-4 \pm √(16 + 168))/(4)](https://img.qammunity.org/2023/formulas/mathematics/high-school/h4ewpzxsji90c9xvyc27fvz42gfq6fp0et.png)
![x = (-4 \pm √(184))/(4)](https://img.qammunity.org/2023/formulas/mathematics/high-school/9kzucjiza4tkvzoi38npajr63tiur7cxk9.png)
![x = (-4 \pm 2 √(46))/(4)](https://img.qammunity.org/2023/formulas/mathematics/high-school/hqzjgtqkrpiq2hyfo10kopu32wz25kmt2k.png)
![x = (-2 \pm √(46))/(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/p4bohp1rmrxtvicghmjv6688igb8x0u79d.png)
We discard the negative solution since the length of a side of a triangle cannot be negative.
![x = (-2 + √(46))/(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/7yt7a897yay9qm71b8s0irsd1evmiexcds.png)
![x = 2.391](https://img.qammunity.org/2023/formulas/mathematics/high-school/na94nbbueee1fw1w889zi321x1y1zs8ydt.png)
![x + 2 = 2.391 + 2 = 4.391](https://img.qammunity.org/2023/formulas/mathematics/high-school/btewwofya639vt0blul7s2jmlodd8yw7za.png)
The shorter leg measures 2.4 ft.
the longer leg measures 4.4 ft.