The equation of the line given is,
![y=-4x-3](https://img.qammunity.org/2023/formulas/mathematics/college/k0bnccd0lpc8hcsz0zz1lmbll8s3s56t3k.png)
We were told that a line is parallel to the equation.
Therefore, from the equation above, the slope of the line is
![m_1=-4](https://img.qammunity.org/2023/formulas/mathematics/college/rdymgsllj500xq6x2kvi859wbq9h1n9w8l.png)
Rule for paralel line
![m_1=m_2](https://img.qammunity.org/2023/formulas/mathematics/college/bb136i6nrncquza4si9ea0meh8h3qjcl3x.png)
Hence, the slope (m2) is
![-4](https://img.qammunity.org/2023/formulas/mathematics/college/tvbh4zbrsjoohl89unqghc6hcaykfmjpeq.png)
Also, the line passes through the point (-2,4).
The formula to calculate the equation in sope-intercept dform is,
![y-y_1=m(x-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/csobd57zth7rh9k4hz9amldzpq2owf0z4j.png)
where,
![(x_1,y_1)=(-2,4)](https://img.qammunity.org/2023/formulas/mathematics/college/mcldulbf5wvdcktrcfeb7ds1ouhzwmstxx.png)
Therefore,
![y-4=-4(x-(-2))](https://img.qammunity.org/2023/formulas/mathematics/college/402po7dbnl2nx96o3qab73g0mr8sp2zu0j.png)
Simplify
![\begin{gathered} y-4=-4(x+2) \\ y-4=-4x-8 \\ y=-4x-8+4 \\ y=-4x-4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/e564crgdwlz1llr3fui3qrn2pte1cu0bwn.png)
Hence, the equation of theline is
![y=-4x-4\text{ \lparen Option 3\rparen}](https://img.qammunity.org/2023/formulas/mathematics/college/qfbse453u6mub0uyafzj2tlgwvv11wk3za.png)