477,530 views
27 votes
27 votes
The problem is attached, thanks.

The problem is attached, thanks.-example-1
User BigUser
by
2.8k points

1 Answer

17 votes
17 votes

Answer:


\displaystyle (dy)/(dx) \bigg| \limit_((1, 4)) = 2

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

Algebra I

  • Coordinates (x, y)
  • Exponential Rule [Root Rewrite]:
    \displaystyle \sqrt[n]{x} = x^{(1)/(n)}
  • Exponential Rule [Rewrite]:
    \displaystyle b^(-m) = (1)/(b^m)

Calculus

Derivatives

Derivative Notation

Derivative of a constant is 0

Implicit Differentiation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Explanation:

Step 1: Define


\displaystyle √(x) - √(y) = -1

Point (1, 4)

Step 2: Differentiate

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:
    \displaystyle x^{(1)/(2)} - y^{(1)/(2)} = -1
  2. [Implicit Differentiation] Basic Power Rule:
    \displaystyle (1)/(2)x^{(1)/(2) - 1} - (1)/(2)y^{(1)/(2) - 1}(dy)/(dx) = 0
  3. [Implicit Differentiation] Simplify Exponents:
    \displaystyle (1)/(2)x^{(-1)/(2)} - (1)/(2)y^{(-1)/(2)}(dy)/(dx) = 0
  4. [Implicit Differentiation] Rewrite [Exponential Rule - Rewrite]:
    \displaystyle \frac{1}{2x^{(1)/(2)}} - \frac{1}{2y^{(1)/(2)}}(dy)/(dx) = 0
  5. [Implicit Differentiation] Isolate y terms:
    \displaystyle -\frac{1}{2y^{(1)/(2)}}(dy)/(dx) = -\frac{1}{2x^{(1)/(2)}}
  6. [Implicit Differentiation] Isolate
    \displaystyle (dy)/(dx):
    \displaystyle (dy)/(dx) = \frac{2y^{(1)/(2)}}{2x^{(1)/(2)}}
  7. [Implicit Differentiation] Simplify:
    \displaystyle (dy)/(dx) = \frac{y^{(1)/(2)}}{x^{(1)/(2)}}

Step 3: Evaluate

  1. Substitute in point [Derivative]:
    \displaystyle (dy)/(dx) = \frac{(4)^{(1)/(2)}}{(1)^{(1)/(2)}}
  2. Exponents:
    \displaystyle (dy)/(dx) = (2)/(1)
  3. Division:
    \displaystyle (dy)/(dx) = 2

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Implicit Differentiation

Book: College Calculus 10e

User Fostandy
by
2.7k points