Answer:
1. Translation of 4 units right.
2. Vertical stretch by a factor of 2:
3. Reflection in the x-axis:
4. Translation of 1 unit up.
Explanation:
Transformations
![\textsf{For $a > 0$}:](https://img.qammunity.org/2023/formulas/mathematics/college/h541cxwzphhs3sr8tleswo80yf3bykk28h.png)
![f(x-a) \implies f(x) \: \textsf{translated $a$ units right}.](https://img.qammunity.org/2023/formulas/mathematics/high-school/jir4n9r0rph408rlm03oan6c9a6ek395fu.png)
![a\:f(x) \implies f(x) \: \textsf{stretched parallel to the y-axis (vertically) by a factor of $a$}.](https://img.qammunity.org/2023/formulas/mathematics/high-school/pxhx8muwnyb25z90ijmrn3l0l3a6337op2.png)
![-f(x) \implies f(x) \: \textsf{reflected in the $x$-axis}.](https://img.qammunity.org/2023/formulas/mathematics/high-school/ibeu2fsyh2sjiruxg23kwrfs4jrakyaqmy.png)
![f(x)+a \implies f(x) \: \textsf{translated $a$ units up}.](https://img.qammunity.org/2023/formulas/mathematics/high-school/bp0b27kz23xv1mpl9d7n694mw0f7ewwzak.png)
Given function:
![g(x)=-2(x-4)^2+1](https://img.qammunity.org/2023/formulas/mathematics/high-school/9bh8xi2xk5xvei52f3wakc36wq3zcx34m5.png)
The parent function of the given function is:
![f(x)=x^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/ggqp4tf9ahbsgqhvjmgpjcoq74fanvke01.png)
When determining the sequence of transformations when the function contains more than one transformation, follow the order of operations (PEMDAS).
1. Translation of 4 units right.
![f(x-4) \implies g(x)=(x-4)^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/ogvx3enrjsa33ce0jka3yxwc28qumtir8f.png)
2. Vertical stretch by a factor of 2:
![2f(x-4)\implies g(x)=2(x-4)^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/l5arotarqviextdvokjuga339rnhpn5rzd.png)
3. Reflection in the x-axis:
![-2f(x-4)\implies g(x)=-2(x-4)^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/gpiim49dswfg7peceagfu9g6r1yqx0wna2.png)
4. Translation of 1 unit up.
![-2f(x-4)+1\implies g(x)=-2(x-4)^2+1](https://img.qammunity.org/2023/formulas/mathematics/high-school/1ii3ylph5stm6azou9fg1p9fe7brccebxj.png)