Answer: -1
==========================================================
Step-by-step explanation:
This is the given piecewise function
![f(\text{x}) = \begin{cases}\text{x}^3 \ \ \ \ \ \ \ \ \text{ if } \text{x} < -3\\2\text{x}^2-9 \ \text{ if } -3 \le \text{x} < 4\\5\text{x}+4 \ \ \text{ if } \text{x} \ge 4\\\end{cases}](https://img.qammunity.org/2023/formulas/mathematics/college/dub0dqzuqzwhuqwpf6cxcvh9lwsnjygl9z.png)
This is another way to look at the piecewise function
- If
, then
![f(\text{x}) = \text{x}^3](https://img.qammunity.org/2023/formulas/mathematics/college/4k6f6n4u2vjeq11rh6088gwpm2iojvrqzu.png)
- If
, then
![f(\text{x}) = 2\text{x}^2-9](https://img.qammunity.org/2023/formulas/mathematics/college/o1m20gv48ooiptono57dec4exxq8c622ll.png)
- If
, then
![f(\text{x}) = 5\text{x}+4](https://img.qammunity.org/2023/formulas/mathematics/college/dfmadv8f27h7clzh8owkhpac55t7kjx442.png)
We have 3 different branches or pathways to take based on what the x input is.
We want to compute f(-2). This means we want to find f(x) when x = -2 is the input.
This input matches with the interval
since
is a true statement. Therefore, we'll use the second option
-----------
Plug x = -2 into the second part to get...
![f(\text{x}) = 2\text{x}^2-9 \ \ \text{ when } -3 \le \text{x} < 4\\\\f(-2) = 2(-2)^2-9 \\\\f(-2) = 2(4)-9 \\\\f(-2) = 8-9 \\\\f(-2) = -1 \\\\](https://img.qammunity.org/2023/formulas/mathematics/college/22pspjfuywlks7fzundxc3y9sbkkfga6gs.png)