Write the pythagorean theorem for each one of the 3 right traingles:
![\begin{gathered} 16^2=z^2+x^2 \\ \\ z^2=y^2+4^2 \\ \\ x^2=y^2+12^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ph98fgvrp6zz8qyhriphr0f9qyvwj125sz.png)
1. Solve x^2 in the first equation:
![x^2=16^2-z^2](https://img.qammunity.org/2023/formulas/mathematics/college/7t2lt8ruttlmbvxxhsxqb8nzt5yj9t6dql.png)
2. Solve y^2 in the second equation:
![y^2=z^2-4^2](https://img.qammunity.org/2023/formulas/mathematics/college/hdtzaqt09uu2mrqui3t64stdgztdayl5w7.png)
3. Substitute the x^2 and y^2 in the third equation by the values you get in the previous steps:
![16^2-z^2=z^2-4^2+12^2](https://img.qammunity.org/2023/formulas/mathematics/college/bzbgjymt856gqsa7qxltnkz1kotoyj0uxg.png)
4. Solve z^2:
![\begin{gathered} -z^2-z^2=-4^2+12^2-16^2 \\ -2z^2=-16+144-256 \\ -2z^2=-128 \\ z^2=(-128)/(-2) \\ \\ z^2=64 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/euikn1s7x299ye4ocq7pwb4ci8nhgqnzry.png)
5. Use the value of z^2 to solve x and y:
![\begin{gathered} x^2=16^2-z^2 \\ x^2=256-64 \\ x^2=192 \\ x=√(192) \\ x\approx13.9 \\ \\ \\ y^2=z^2-4^2 \\ y^2=64-16 \\ y^2=48 \\ y=√(48) \\ y\approx6.9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cxopu1jahf6i0v4h9vyfow0xya0joga1mu.png)
Then, the values of x and y are:x=13.9y=6.9