we have the function
![g(x)=21\log_2(x+1)+85](https://img.qammunity.org/2023/formulas/mathematics/high-school/ng6605s6n7men030vc48lgdfo14p3qspi3.png)
Part 1
we have that
For g(x)=232 frogs
Find out the value of x
substitute in the given function
![\begin{gathered} 232=21\operatorname{\log}_2(x+1)+85 \\ 232-85=21\log_2(x+1) \\ 147=21\log_2(x+1) \\ (147)/(21)=\log_2(x+1) \\ \\ 7=\log_2(x+1) \end{gathered}]()
Apply property of logarithms
![\begin{gathered} 2^7=x+1 \\ x=2^7-1 \\ x=127 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/gbqxd9cbtjrpddpeyaeb0vbxwdwa35recv.png)
therefore
The answer Part 1 is 127 weeks
Part 2
For x=140 weeks
substitute in the given function g(x)
![\begin{gathered} g(x)=21\operatorname{\log}_2(140+1)+85 \\ g(x)=21\log_2(141)+85 \end{gathered}]()
change the base of the logarithm
Remember that
![\log_2141=(\log_(10)141)/(\log_(10)2)=(log141)/(log2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/u9232g8tv5o9rmocf5ryee8gzksut7w35a.png)
substitute
![\begin{gathered} g(x)=21(log141)/(log2)+85 \\ \\ g(x)=234.93 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/af5zo7qtc6a4i7bqghpnkt9b5go1s00l20.png)
therefore
The answer Part 2 is 235 frogs