Answer:


(c) Not equivalent.


(f) Not equivalent.
Explanation:
Equivalent expressions are expressions that simplify to the same expression.
Part (a)
![\begin{aligned}&\textsf{Add 3 to $x$}: & \quad x+3\\&\textsf{Subtract the result from $1$}: & \quad 1-(x+3)\\&\textsf{Double}: & \quad 2[1-(x+3)]\\&\textsf{Expand}: & \quad 2[1-x-3]\\&\textsf{Simplify}:&2[-x-2]\\&& -2x-4\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/middle-school/n17flt5w20qjdxesdmfwqjogaemrufmjxj.png)
Part (b)

Part (c)
The expressions are not equivalent.
The coefficients of the x-variables are the negatives of one another, and the constants are different numbers.
Part (d)

Part (e)
![\begin{aligned}&\textsf{Subtract 4 from $x$}: & \quad x-4\\&\textsf{Triple the result}: & \quad 3(x-4)\\&\textsf{Square}: & \quad [3(x-4)]^2\\&\textsf{Expand}: & \quad [3x-12]^2\\&\textsf{Simplify}:& 9x^2-72x+144\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/middle-school/8nackfhzd722v2gf3gkl8i5ubmxrultcbt.png)
Part (f)
The expressions are not equivalent.
The coefficients the second equation are three times the coefficients of the first equation.