42.3k views
2 votes
Just uhh… it’s a lot, I’ll try to do this by myself.

Just uhh… it’s a lot, I’ll try to do this by myself.-example-1
User Vlince
by
8.4k points

1 Answer

1 vote

Answer:


\textsf{(a)} \quad -2x-4


\textsf{(b)} \quad 2x+5

(c) Not equivalent.


\textsf{(d)} \quad 3x^2-24x+48


\textsf{(e)} \quad 9x^2-72x+144

(f) Not equivalent.

Explanation:

Equivalent expressions are expressions that simplify to the same expression.

Part (a)


\begin{aligned}&\textsf{Add 3 to $x$}: & \quad x+3\\&\textsf{Subtract the result from $1$}: & \quad 1-(x+3)\\&\textsf{Double}: & \quad 2[1-(x+3)]\\&\textsf{Expand}: & \quad 2[1-x-3]\\&\textsf{Simplify}:&2[-x-2]\\&& -2x-4\end{aligned}

Part (b)


\begin{aligned}&\textsf{Add 3 to $x$}: & \quad x+3\\&\textsf{Double}: & \quad 2(x+3)\\&\textsf{Subtract $1$ from the result}: & \quad 2(x+3)-1\\&\textsf{Expand}: & 2x+6-1\\&\textsf{Simplify}:&2x+5\end{aligned}

Part (c)

The expressions are not equivalent.

The coefficients of the x-variables are the negatives of one another, and the constants are different numbers.

Part (d)


\begin{aligned}&\textsf{Subtract 4 from $x$}: & \quad x-4\\&\textsf{Square the result}: & \quad (x-4)^2\\&\textsf{Triple}: & \quad 3(x-4)^2\\&\textsf{Expand}: & \quad 3(x^2-8x+16)\\&\textsf{Simplify}:& 3x^2-24x+48\end{aligned}

Part (e)


\begin{aligned}&\textsf{Subtract 4 from $x$}: & \quad x-4\\&\textsf{Triple the result}: & \quad 3(x-4)\\&\textsf{Square}: & \quad [3(x-4)]^2\\&\textsf{Expand}: & \quad [3x-12]^2\\&\textsf{Simplify}:& 9x^2-72x+144\end{aligned}

Part (f)

The expressions are not equivalent.

The coefficients the second equation are three times the coefficients of the first equation.

User Malakim
by
7.5k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories