![f(x)=\sqrt[]{x^2+1}](https://img.qammunity.org/2023/formulas/mathematics/college/m08c5ttt0qw8avg6s625iusm89fg3vxksj.png)
In a radical function as given the domain is any x-value for which the radical (value under the radical sing) is not negative:

As any value of x makes x squared be possitive or 0, the domain is:

Any value of x makes x squared greater than or equal to zero the range is:
![\begin{gathered} x^2\ge0 \\ \\ \text{Range stars in x=0:} \\ f(0)=\sqrt[]{0+1} \\ f(0)=\sqrt[]{1} \\ f(0)=1 \\ \\ Range\colon \\ y\ge1 \\ \\ \text{Interval notation;} \\ \lbrack1,\infty) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/r4756w98jdlevxbhas6aoh9md55kdtztz6.png)