Given: The equation below
![\begin{gathered} y=2x+4 \\ Point:(2,-2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3y9z1epi7owr97f6u2g312b9a1i093ljcc.png)
To Determine: The equation that is perpendicular to the given equation
Solution
The given equation can be represented using the slope-intercept form
![\begin{gathered} slope-intercept-form:y=mx+c \\ Where \\ m=slope \\ c=intercept \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/saw23y8j4h55rn42ffw7jxwx6h04u1ysbc.png)
Let us determine the slope of the equation
![\begin{gathered} y=mx+c \\ y=2x+4 \\ m=2,c=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5uco2ur5s81l2lodnpof4iw6ssazlbgd6g.png)
Therefore, the slope is 2
Please note two linear equations are perpedicular if the slope one is a negative inverse of the other
So, we have
![\begin{gathered} m_1=-(1)/(m) \\ m_1=slope\text{ of the perpendicular equation} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/my8e3i13ql3jrv9io321kjyq4vw3ag2j5o.png)
Given the slope and a point, we can determine the equation using the formula below
![\begin{gathered} point(x_1,y_1),slope(m) \\ (y-y_1)/(x-x_1)=m \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/si42ro4glsqrebjy0d1j6r1cj09rpf8jg5.png)
Let us substitute the slope and the coordinate of the points given
![\begin{gathered} (y--2)/(x-2)=-(1)/(2) \\ (y+2)/(x-2)=-(1)/(2) \\ y+2=-(1)/(2)(x-2) \\ y+2=-(1)/(2)x+1 \\ y=-(1)/(2)x+1-2 \\ y=-(1)/(2)x-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vgcbx72exwrqgsw1vc24eb787btcbvaq9z.png)
Hence, the equation of the perpendicular to the given equation is
![y=-(1)/(2)x-1](https://img.qammunity.org/2023/formulas/mathematics/college/viv4u3f0lx3t1j62i43xgjpmz2wayi5111.png)