The free-body diagram of the given problem is the following:
In the diagram we have the following forces:
![\begin{gathered} T=\text{ tension} \\ T_y=y-component\text{ of the tension} \\ T_x=\text{horizontal component of the tension} \\ mg=\text{ weight} \\ m=\text{ mass} \\ g=\text{ acceleration of gravity} \\ T_H=\text{horizontal tension} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/4hjrdt1a7nbydxckzc3ekgly5j4o1m26yu.png)
We are asked to determine the tension in the horizontal tension we will add the horizontal forces:
![\Sigma F_h=T_x-T_H](https://img.qammunity.org/2023/formulas/physics/college/6uwqyan5hq8s5xdb09w94wlu48t8x1c3mf.png)
Since there is no movement in this direction this means that the sum of forces must be equal to zero, therefore, we have:
![T_x-T_H=0](https://img.qammunity.org/2023/formulas/physics/college/rvfhl4s4sb29p4x00i93yoza9ukf1rompo.png)
Solving for the horizontal tension we get:
![T_H=T_x](https://img.qammunity.org/2023/formulas/physics/college/4ano4y6jpiejopvage924nkv3oiid8x9pm.png)
From the following right triangle we can determine the value of the x-coordinate of the tension "T":
We can use the function cosine and we get:
![\cos 37=(T_x)/(T)](https://img.qammunity.org/2023/formulas/physics/college/qathbm7okbcfg619q9hc5ovx6nsm84lu3o.png)
Now we multiply both sides by T:
![T\cos 37=T_x](https://img.qammunity.org/2023/formulas/physics/college/22eqto8zvz096gzysi0tuayb82si0s1wk4.png)
Now we substitute this value in the sum of forces:
![T_H=T\cos 37](https://img.qammunity.org/2023/formulas/physics/college/f6gcxubo4bwcu8ck0t9vsk1dg0xobcofja.png)
Now we need to determine the value of "T". To do that we will add the vertical forces, we get:
![\Sigma F_v=T_y-mg](https://img.qammunity.org/2023/formulas/physics/college/ai04wg8qald944jcoq88r8ipraysg1ujvy.png)
Since there is no vertical movement the forces add up to zero, we get:
![T_y-mg=0](https://img.qammunity.org/2023/formulas/physics/college/ep12fc6gxqlwe56ulw6ssruq59jyfg6eci.png)
Now we use the same right triangle to get the value of the y-component of the tension:
![\sin 37=(T_y)/(T)](https://img.qammunity.org/2023/formulas/physics/college/5t4m9k6n4zay6726y6kx5od48nhmjht7xu.png)
Multiplying both sides by "T":
![T\sin 37=T_y](https://img.qammunity.org/2023/formulas/physics/college/zn82wagklremh08zqdf7g4em7prwe77yi2.png)
Now we substitute in the sum of vertical forces:
![T\sin 37-mg=0](https://img.qammunity.org/2023/formulas/physics/college/keca72pg61jexnloisd9pmmgy7btrmi1sn.png)
Now we solve for "T", first by adding "mg" to both sides:
![T\sin 37=mg](https://img.qammunity.org/2023/formulas/physics/college/uke145y8miga47zhgwco3pnvo0s4dd7a7g.png)
Now we divide both sides by "sin37":
![T=(mg)/(\sin37)](https://img.qammunity.org/2023/formulas/physics/college/wa8vtxye4olmcpat6vpesg9fg81fw89j7x.png)
Now we substitute this value in the formula for the horizontal tension:
![T_H=(mg)/(\sin37)\cos 37](https://img.qammunity.org/2023/formulas/physics/college/gw4wgpeczg1bnynnrhoen65ls84r9r95dg.png)
Now we substitute the values:
![T_H=\frac{(73\operatorname{kg})(9.8(m)/(s^2))}{\sin37}\cos 37]()
Now we solve the operations:
![T_H=949.37N](https://img.qammunity.org/2023/formulas/physics/college/n0uzntbmorwb38wu2jh86eql81937rxu3v.png)
Therefore, the tension in the horizontal section is 949.37N.