We will compute the volume of each figure.
1) Figure A
We have a cone with:
• Ab = base area = 20 cm²,
,
• h = heigh = 5 cm.
The volume of the cone is:
![V_A=(1)/(3)\cdot A_b\cdot h=(1)/(3)\cdot(20cm^2)\cdot5\operatorname{cm}\cong33.3cm^3\text{.}]()
2) Figure B
We have a cylinder with:
• Ab = base area = 20 cm²,
,
• h = heigh = 6 cm.
The volume of the cylinder is:
![V_B=A_b\cdot h=20cm^2\cdot6\operatorname{cm}=120cm^3.]()
3) Figure C
We have an inclined cylinder with:
• Ab = base area = 20 cm²,
,
• h = heigh = 5 cm.
The volume of the inclined cylinder is:
![V_C=A_b\cdot h=20cm^2\cdot5\operatorname{cm}=100cm^3.]()
4) Figure D
We have a parallelepiped with:
• Ab = base area = 20 cm²,
,
• h = heigh = 5 cm.
The volume of the parallelepiped is:
![V_D=A_b\cdot h=20cm^2\cdot5\operatorname{cm}=100cm^3.]()
5) Figure E
We have an inclined square pyramid with:
• Ab = base area = 20 cm²,
,
• h = heigh = 10 cm.
The volume of the square pyramid is:
![V_E=(1)/(3)\cdot A_b\cdot h=(1)/(3)\cdot(20cm^2)\cdot10\operatorname{cm}\cong66.67cm^3\text{.}]()
Answer
Among these figures, figure C and figure D have the same volume.