Graph both equations. The coorinates of the point where the graphs intersect is the solution to the system of equations.
To graph them, notice that each equation corresponds to a line. A straight line can be drawn if two points on that line are given. Replace two different values of x into each equation to find its corresponding value of y, then, plot the coordinate pairs (x,y) to draw the lines.
First equation:
![y=2x-3](https://img.qammunity.org/2023/formulas/mathematics/high-school/3f76bvhffklm1pfpdq7o6cac6gxm96k96l.png)
For x=2 and x=5 we have that:
![\begin{gathered} x=2 \\ \Rightarrow y=2(2)-3 \\ =4-3 \\ =1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cdbfy8300mv6tpx8k3y3e0974zvnygg0hc.png)
![\begin{gathered} x=5 \\ \Rightarrow y=2(5)-3 \\ =10-3 \\ =7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fz6w26ufd5cabvgs9eey09wtdtmvykhumj.png)
Then, the points (2,1) and (5,7) belong to the line:
Second equation:
![x+3y=12](https://img.qammunity.org/2023/formulas/mathematics/college/5hxhywrelthro2viybh2tygw166y7le0o0.png)
For x=0 and x=6 we have:
![\begin{gathered} x=0 \\ \Rightarrow0+3y=12 \\ \Rightarrow3y=12 \\ \Rightarrow y=(12)/(3) \\ \Rightarrow y=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uy41po5pbjqu1jxsw8rg5djmpsbj3u4bck.png)
![\begin{gathered} x=6 \\ \Rightarrow6+3y=12 \\ \Rightarrow3y=12-6 \\ \Rightarrow3y=6 \\ \Rightarrow y=(6)/(3) \\ \Rightarrow y=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3c3ropmqzfk0pp3l1ynso157emjicobk55.png)
Then, the points (0,4) and (6,2) belong to the line:
Solution:
The lines intersect at the point (3,3).
Then, the solution for this system of equations, is:
![\begin{gathered} x=3 \\ y=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mmoh5ikqwji890obqmk57r3t7ywstxo0sw.png)