27.5k views
5 votes
Solve the equation using any method. Select the solution(s). -(x + 9)^2 = 64. POSSIBLE ANSWERS: A)x=-1 B) no real solution C) x=-(radical symbol here)1 D) x=(radical symbol here)1

User Questioner
by
8.5k points

1 Answer

6 votes

B) no real solution

Step-by-step explanation


-(x+9)^2=64

Step 1

make


(a+b)^2=a^2+2ab+b^2

then


-(x+9)^2=-(x^2-2\cdot9\cdot x+9^2)=-(x^2+18x+81)=-x^2-18x-81

Hence


\begin{gathered} -x^2-18x-81=64 \\ -x^2-18x-81-64=0 \\ -x^2-18x-145=0 \end{gathered}

Step 2

find x, using the quadratic formula


\begin{gathered} x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ \end{gathered}

Let

a=-1

b=-18

c=-145

replace,


\begin{gathered} x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ x=\frac{+18\pm\sqrt[]{-18^2-4\cdot-1\cdot-145}}{2a} \\ x=\frac{-18\pm\sqrt[]{324-580}}{-2} \\ \\ x=\frac{-18\pm\sqrt[]{-256}}{-2} \\ \end{gathered}

Now


\sqrt[]{-256}

is not a real number, so the answer is

B) no real solution

User Tareq Albeesh
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.