We can divide the prism in 3 pairs of equal rectangles as follows:
for the first pair, the area of one rectangle is
![\begin{gathered} A_1=\text{base}* height \\ A_1=7*21=147 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/10sub58n11rl2zulir7fodv6ashmt4ws6h.png)
for the second pair, the area of one rectangle is
![\begin{gathered} A_2=\text{base}* height \\ A_2=16*7=112 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/828z0x8ojrrs814b4qpej8p15h0u0m8x6v.png)
and finally, for the third pair, the area of one rectangle is
![\begin{gathered} A_3=\text{base}* height \\ A_3=16*21 \\ A_3=336 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jtz6b0o2ml9txcb5brbsxb0fqcdpoa40lh.png)
Therefore, the surface area S is given by
![S=2\cdot A_1+2\cdot A_2+2\cdot A_3](https://img.qammunity.org/2023/formulas/mathematics/college/sxd5n0pu12wor0lcf65visppuedyp4sb5n.png)
which leads to
![\begin{gathered} S=2\cdot147+2\cdot112+2\cdot336 \\ S=1190cm^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4oorkv4y9pfsqezaaw7ed1qeeywak2bg0l.png)
which corresponds to option C.