Given that the mass of each ball is m = 6.8 kg
The distance between them is d = 2r
Here, r is the radius of the ball.
The gravitational force of attraction is
![F=\text{ 6.2}*10^(-8)\text{ N}](https://img.qammunity.org/2023/formulas/physics/college/apmxl4vjtura5ht6q1d9qzpysd4n5hwhui.png)
We have to find the radius of the ball.
The gravitational force formula is
![F=(Gmm)/((2r)^2)](https://img.qammunity.org/2023/formulas/physics/college/w5izfr408ggg8mwg0czis3rux4zk3ukwz0.png)
Here, the universal gravitational constant is
![G=\text{ 6.67}*10^(-11)Nm^2kg^(-2)](https://img.qammunity.org/2023/formulas/physics/high-school/voxpt6sbnndf23e6zqohxudvx0klwkrgat.png)
The radius will be
![\begin{gathered} r=\sqrt[]{(Gmm)/(4F)} \\ =\sqrt[]{(6.67*10^(-11)*6.8*6.8)/(4*6.2*10^(-8))} \\ =\text{ 0.114 m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/5i4m3a3pd5vfyu6d7j44vnjrx931t0198d.png)
Thus, the radius of one of these balls is 0.114 m