Given
v = 343 m/s
ac = 5g
ac = 5*9.8 m/s^2
ac = 49 m/s^2
where,
v: velocity
ac = centripetal aceleration
Procedure
We call the acceleration of an object moving in uniform circular motion—resulting from a net external force—the centripetal acceleration ac; centripetal means “toward the center” or “center seeking”.
Formula
![\begin{gathered} a_c=(v^2)/(r) \\ r=(v^2)/(a_c) \\ r=((343m/s)^2)/(49m/s^2) \\ r=2401\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/jxgo1umyo3uz3rq5o9xt9uku67fmjbtagv.png)
The minimum radius not to exceed the centripetal acceleration is 2401 m.