Given the Trigonometric Functions:
![\begin{gathered} sec(948\text{\degree}) \\ \\ cos(-948\text{\degree}) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/agshqpb6c6u8kyywh3z13jkjthresim9kv.png)
Using your calculator you get:
![sec(948\text{\degree})\approx-1.49](https://img.qammunity.org/2023/formulas/mathematics/college/okh9jmp2ekyzt42o9dgyn236boue4u2pbn.png)
By definition, Secant is negative in Quadrant III.
Finds its Reference Angle as follows:
![948\text{\degree}-5\cdot180\text{\degree}=48\text{\degree}](https://img.qammunity.org/2023/formulas/mathematics/college/sbuo3wubg8l7bc7wj8wt4vsx3rla0s83t0.png)
Because:
![(948)/(180)\approx5](https://img.qammunity.org/2023/formulas/mathematics/college/wfhroz19x5oq0pyqr5i8d6s5cgu176b4io.png)
Then, you get:
![=-sec\left(48\text{\degree}\right)](https://img.qammunity.org/2023/formulas/mathematics/college/f0cjv336gg0s9svwba8sof5dgdk5ysm12j.png)
Notice that:
![cos(-948\text{\degree})\approx-0.67](https://img.qammunity.org/2023/formulas/mathematics/college/4di1wn2bh5lf1r5uaqjug0ov18320mud0f.png)
Then, you can conclude that it is in Quadrant II.
Therefore its Reference Angle is:
![5\cdot180\text{\degree}-948\text{\degree}=-48](https://img.qammunity.org/2023/formulas/mathematics/college/np20u7gm1k1218hcixgn7qkisfoiy5syd4.png)
So you can set up:
![=-cos\lparen-48)](https://img.qammunity.org/2023/formulas/mathematics/college/lq0y96byytk9nf2lu6m4p62b801pqsvhg4.png)
By definition:
![cos(-\theta)=cos\theta](https://img.qammunity.org/2023/formulas/mathematics/college/on7lz5ztwee9q22mpa89i1ca3my6sh2lmc.png)
Therefore, you can rewrite it in this form:
![=-cos(48\text{\degree})](https://img.qammunity.org/2023/formulas/mathematics/college/3pdgfinqbhkr455ocplhrluy8qv2imh759.png)
Hence, the answer is:
![\begin{gathered} sec(48\text{\degree}) \\ \\ -cos(48\text{\degree}) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/h8r2zvubqmoyloplin7yfb7o9gksrfvu9e.png)