106k views
0 votes
What is the sum of the first 6 terms in this series?

6 + (-18) + 54 + (-162) ...
-1,092
-2,184
1,092
2,184

User Kliteyn
by
3.1k points

1 Answer

4 votes

Step-by-step explanation


\mathrm{A\: geometric\: sequence\: has\: a\: constant\: ratio\: }r\mathrm{\: and\: is\: defined\: by}\: a_n=a_1\cdot r^(n-1)

Compute the ratios of all the adjacent terms:


r=(a_(n+1))/(a_n)
(-18)/(6)=-3,\: \quad (54)/(-18)=-3,\: \quad (-162)/(54)=-3
\mathrm{The\: ratio\: of\: all\: the\: adjacent\: terms\: is\: the\: same\: and\: equal\: to}
r=-3
a_n=a_1r^{\mleft\{n-1\mright\}}
\mathrm{For\: }a_1=6,\: r=-3
a_n=6\mleft(-3\mright)^(n-1)

Now, plugging in the term 5 into the equation:


a_n=6\cdot(-3)^(5-1)

Subtracting numbers:


a_n=6\cdot(-3)^4=6\cdot81=486

The 5th term is 486.

Now, we need to compute the 6th term:


a_n=6\cdot(-3)^(6-1)=6\cdot(-3)^5

Computing the numbers:


a_n=6\cdot(-243)

Multiplying the numbers:


a_n=-1,458

The term 6th is -1458

Adding the first 6 terms:

6 + (-18) + 54 + (-162) + 486 + (-1,458) = -1,092

In conclusion, the solution is -1,092

User Haseeb Javed
by
3.4k points