Answer:
√3/8
Step-by-step explanation:
If θ = 30 degrees, the value of the function g(θ) = cos θ is equal to:
g(θ) = cos θ
g(30) = cos 30 = √3/2
Then, if we want to find g(θ)/4 when θ = 30, we will replace g(θ) by √3/2 to get:
![(g(\theta))/(4)=(g(30))/(4)=\frac{\frac{\sqrt[]{3}}{2}}{4}=\frac{\sqrt[]{3}}{2\cdot4}=\frac{\sqrt[]{3}}{8}](https://img.qammunity.org/2023/formulas/mathematics/college/1d489jxgpcy4wt9gonye7mxjp0qmax7xoc.png)
Therefore, the exact value for g(θ)/4 when θ = 30 is √3/8