Given the quadratic equation:
![y=x^2-7x+3](https://img.qammunity.org/2023/formulas/mathematics/college/otl1phxlvtu37zc97k4ps8ae9c304n4vdw.png)
To create a sketch of the quadratic function, follow the steps below.
Step 01: Find the x-intercepts.
The x-intercepts are the zeros of the function and can be found using the quadratic formula:
![x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}](https://img.qammunity.org/2023/formulas/mathematics/college/rxvf73usjbbwyik14knxdemoz21vfz2ufc.png)
In this question:
a = 1
b = -7
c = 3
Then,
![\begin{gathered} x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ x=\frac{-(-7)\pm\sqrt[]{(-7)^2-4\cdot1\cdot3}}{2\cdot1} \\ x=\frac{7\pm\sqrt[]{49-12}}{2}=\frac{7\pm\sqrt[]{37}}{2} \\ x_1=\frac{7-\sqrt[]{37}}{2}=0.5 \\ x_2=\frac{7+\sqrt[]{37}}{2}=6.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rz6miwxmhuydqwg8rnve8v4hid6d7flc6o.png)
So, the equation has the points (0.5, 0) and (6.5, 0).
Step 02: Find the vertex.
The x-vertex is:
![\begin{gathered} x_v=(-b)/(2a) \\ x_v=(-(-7))/(2\cdot1) \\ x_v=(7)/(2) \\ x_v=3.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/n3jzc4zthcgjtbgzlsci1btroar5yq00u4.png)
And, the y-vertex is:
![\begin{gathered} y_v=(-(b^2-4ac))/(4a) \\ y_v=(-\lbrack(-7)^2-4\cdot1\cdot3\rbrack)/(4\cdot1) \\ y_v=(-(49-12))/(4) \\ y_v=(-37)/(4)=-9.25 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ksdhr5i0r703g0hbv0k6kgq7wy7ftumiwr.png)
So, the vertex is the point (3.5, -9.25).
Step 03: Find the axis of symmetry.
The axis of symmetry is the line x = xv.
So, the axis of the symmetry is x = 3.5.
Step 04: Draw the graph.
Plot the point and connect them. Then, draw the axis of symmetry.