Given the explicit formula for the Geometric Sequence:
![a_n=9\cdot(-(1)/(3))^((n-1))](https://img.qammunity.org/2023/formulas/mathematics/college/kytdfulxmtmnl9ej2l82u7s2kgdgx1lj5t.png)
Where the nth term is:
![a_n](https://img.qammunity.org/2023/formulas/mathematics/high-school/82tsjyjcw4wyicd8um5gmirev8n6zb0zn0.png)
Then, you need to remember that, by definition, the Recursive Formula for a Geometric Sequence has this form:
![a_n=a_(n-1)\cdot r](https://img.qammunity.org/2023/formulas/mathematics/college/cmwxbvixs4v1xygo4pux4u7yqut7glhvon.png)
Where "r" is the common ratio.
In this case, having the explicit formula with the form:
![a_n=a_1\cdot r^((n-1))](https://img.qammunity.org/2023/formulas/mathematics/college/sej8iqin8ae7ox6ds0bs6dn44c02qf3lin.png)
You can identify that:
![r=-(1)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/l97nmrnl744n3ozbdn96q7qtuxd2qhltdb.png)
![a_1=9](https://img.qammunity.org/2023/formulas/mathematics/college/7p6k36ep8urk99mht2l7wxe0ml0nw1x6n7.png)
Therefore, you can set up the following recursive formula:
![a_n=a_(n-1)(-(1)/(3))](https://img.qammunity.org/2023/formulas/mathematics/college/yj1nd4ksvrygr7b0frd6f9ika0898wpyq4.png)
Hence, you get:
![\begin{cases}a_1=9_{} \\ \\ a_n=a_(n-1)(-(1)/(3))\end{cases}](https://img.qammunity.org/2023/formulas/mathematics/college/xqg6xlajvtfhcsk5mirkhdxmmt5a2gkgpu.png)
Therefore, the answer is: Option A.