ANSWER
F' (-5, 3)
E' (6, 3)
D' (1, -4)
Step-by-step explanation
We are given the cordinates of the triangle as:
F(-10, 6), E(12, 6) and D(2, -8)
The dilation factor is 1/2.
To find the new cordinates, we simply multiply the cordinates of the triangle given by 1/2.
That is:
![\begin{gathered} F^(\prime)\text{ = }(1)/(2)(-10,\text{ 6) = (}(1)/(2)\cdot\text{ -10, }(1)/(2)\cdot\text{ 6)} \\ F^(\prime)\text{ = (-5, 3)} \\ E^(\prime)\text{ = }(1)/(2)(12,\text{ 6) = (}(1)/(2)\cdot\text{ 12, }(1)/(2)\cdot\text{ 6)} \\ E^(\prime)\text{ = (6, 3)} \\ D^(\prime)\text{ = }(1)/(2)(2,\text{ -8) = (}(1)/(2)\cdot\text{ 2, }(1)/(2)\cdot\text{ -8)} \\ D^(\prime)\text{ = (1, -4)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4vbll2rxna08akx59948w4dibt58wdtim3.png)
So, the cordinates of the image are:
F' (-5, 3)
E' (6, 3)
D' (1, -4)