A rhombus has:
- 2 opposite angles which are congruent and
- the four angles add up 360 degrees.
The first statement means that
![\angle1+\angle2=\angle3+\angle4\ldots(A)](https://img.qammunity.org/2023/formulas/mathematics/college/z3y27jd0fx9hovuriffopxtzoj5ld2wexh.png)
The second statement means that
![(\angle1+\angle2)+(\angle3+\angle4)+130+130=360](https://img.qammunity.org/2023/formulas/mathematics/college/7egk6bgoh4e8zalnjm88je36ss2i44k420.png)
By rewritten this equation, we have
![\begin{gathered} (\angle1+\angle2)+(\angle3+\angle4)+260=360 \\ (\angle1+\angle2)+(\angle3+\angle4)=360-260 \\ (\angle1+\angle2)+(\angle3+\angle4)=100\ldots(B) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/se1gmv7ocpx1tiayje5c0w2c09izh6gt56.png)
By substituying equation A into B, we have
![\begin{gathered} (\angle3+\angle4)+(\angle3+\angle4)=100 \\ 2(\angle3+\angle4)=100 \\ \angle3+\angle4=(100)/(2) \\ \angle3+\angle4=50\ldots(C) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kzc5udy8y6vq6l553plkpus96hxez8uaru.png)
A particular property of rhombus is that
![\begin{gathered} \angle1=\angle2 \\ \text{and} \\ \angle3=\angle4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ay5ppebz5k0au471jyo0aavaw2rftfsmax.png)
By substituying the last equality into equation C, we have
![\begin{gathered} \angle4+\angle4=50 \\ 2\angle4=50 \\ \angle4=(50)/(2) \\ \angle4=25 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ol1q1ynsar2eneqxzyfyd43wgddi9ldmeb.png)
Therefore, we have
![\angle3=25](https://img.qammunity.org/2023/formulas/mathematics/college/9dun8mfmjeyo6annql5us8er0szlrn2jqa.png)
And finally, we can see that, necesarilly,
![\angle1=\angle2=\angle3=\angle4=25](https://img.qammunity.org/2023/formulas/mathematics/college/irbwiailwatwwhu0ik8secopb6ylkdp8i7.png)