First let's write each equation using the slope-intercept form:
![y=mx+b](https://img.qammunity.org/2023/formulas/mathematics/high-school/smsb8cbft03lwblmi49nf2l6jby2ofxzws.png)
So we have the following system:
![\begin{cases}y=(3)/(2)x-4 \\ y=-(3)/(2)x+4\end{cases}](https://img.qammunity.org/2023/formulas/mathematics/college/zr740fkck21kp7i4e8xntx361w5bn6giva.png)
In order to solve this system, let's add both equation, this way we can find the value of y and then the value of x:
![\begin{gathered} y+y=(3)/(2)x-4+(-(3)/(2)x)+4 \\ 2y=0 \\ y=0 \\ \\ 0=(3)/(2)x-4 \\ (3)/(2)x=4 \\ 3x=8 \\ x=(8)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9hvbw2gqqi3p22eenh9lqspf590qnn3aae.png)
So the solution to this system is (8/3, 0), therefore the system has one solution.