Given that the mass of uranium is m = 0.375 kg = 375 g.
We have to find the energy.
First, we need to find the number of moles.
The number of moles can be calculated as
![\begin{gathered} \text{Number of moles =}\frac{Given\text{ mass}}{atomic\text{ mass}} \\ =(375)/(235) \\ =1.59\text{ } \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/56w4ouwkc2wk8fq7cacqu17ywduwbq04r8.png)
Next, we have to convert the number of moles into the number of atoms.
The number of atoms will be
![\begin{gathered} \text{Number of atoms=1.59}*\text{6.022}*10^(23) \\ =\text{ 9.57}*10^(23) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/npw8w2ha66au1ovy9867xnx6yk2wm5h74p.png)
One atomic mass unit releases 931.5 MeV energy.
The energy can be calculated as
![\begin{gathered} E=\text{ number of atoms}*931.5MeV* atomic\text{ mass of uranium} \\ =9.57*10^(23)*(931.5*10^6eV)*235 \\ =\text{ }2.095\text{ }*10^(35)eV\text{ } \\ =\text{ 2.095}*10^(35)*1.6*10^(-19)\text{ J} \\ =\text{ 3.35 }*10^{16\text{ }}J \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/1s6q6cygtd7z56wkfefufmevj89sj5ro7v.png)