Solution:
Given the function;
![y=(x^2)/(x^2+48)](https://img.qammunity.org/2023/formulas/mathematics/high-school/bvkymcxcr9ywsrcjm6jt0if2jbia9dcarb.png)
The graph of the function is;
The x-intercept is;
![(0,0)](https://img.qammunity.org/2023/formulas/mathematics/college/6a63lc4vq57cwsqh2xdkg3ipeuvd81w585.png)
The y-intercept is;
![(0,0)](https://img.qammunity.org/2023/formulas/mathematics/college/6a63lc4vq57cwsqh2xdkg3ipeuvd81w585.png)
The relative minimum is;
![(0,0)](https://img.qammunity.org/2023/formulas/mathematics/college/6a63lc4vq57cwsqh2xdkg3ipeuvd81w585.png)
The relative maximum does not exist. Thus;
![DNE=](https://img.qammunity.org/2023/formulas/mathematics/high-school/3krrblvi6lzype64sjrru7oauwach2936l.png)
The points of inflection are;
![\begin{gathered} (-4,(1)/(4))\ldots\ldots..\ldots.smaller\text{ x-value} \\ (4,(1)/(4))\ldots.\ldots\ldots\ldots\text{.larger x-value} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/dh16aol4vjwaisdtjibksrhttonotb1tn4.png)
Lastly, it has no vertical asymptote. The equation of the asymptote is;
![y=1](https://img.qammunity.org/2023/formulas/mathematics/high-school/dy87pp1e3lz28ku95s9s4tv5bvbrg0dkd1.png)