Let x be the number of half dollar and y, the number of quarter dollar
Thus,
![x+y=17\text{ -----eq i)}](https://img.qammunity.org/2023/formulas/mathematics/college/z0f3lhktvfbglctc7qe1l8jeq709b5r31v.png)
Half dollar is 50cent, quarter dollar is 25cents,
Thus,
![0.5x+0.25y=5.50\text{ -----eq i}i)](https://img.qammunity.org/2023/formulas/mathematics/college/9s7sajc1afcyu8wx1y6mrjm00bsiqbmwuo.png)
Solving the two(2) equations simultaneously; we have:
From eq i)
![\begin{gathered} x+y=17 \\ x=17-y\text{ -----eq }iii) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/he3lwgkmno64d0p0oy7952orwjgp513gt0.png)
Put eq iii) into ii), we have:
![\begin{gathered} 0.5x+0.25y=5.50 \\ 0.5(17-y)+0.25y=5.50 \\ 8.5-0.5y+0.25y=5.50 \\ 8.5-0.25y=5.50 \\ 8.5-5.50=0.25y \\ 0.25y=3 \\ y=(3)/(0.25) \\ y=12 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mp2jzhr7ieolm3sb6hccc8up6rysv8g5fp.png)
From eq iii)
![\begin{gathered} x=17-y \\ x=17-12 \\ x=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xmwfd9304rywxksi3fo9bpdnrv0dmgtmih.png)
Hence, there are 5 half dollars and 12 quarter dollars inside the cup