Answer:
The length of the arc AC is;
![AC=20ft](https://img.qammunity.org/2023/formulas/mathematics/high-school/6ubqo2yxknoi6cwsg5baps2nna0moacurh.png)
Step-by-step explanation:
Given the radius AB as 20ft.
![AB=20\text{ ft}](https://img.qammunity.org/2023/formulas/mathematics/high-school/tx79zhhovl1c1s25e3atsf8scy2cb2d6x0.png)
And angle ABC measures 1 radian.
Using the Method 1;
Length of Arc AC is;
![AC=\omega r](https://img.qammunity.org/2023/formulas/mathematics/high-school/jean3qzqga3ap1z3qmciv6wghkp0kxxzgd.png)
Substituting the angle in radian and the radius;
![\begin{gathered} AC=1*20\text{ ft} \\ AC=20\text{ ft} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/yfznz5iogro03ft0qsq0a4uellp3wp7wmz.png)
The length of Arc AC is 20 ft
Method 2;
We will firstly convert the angle from radian to degree.
As shown below;
![\begin{gathered} \theta=1\text{ rad}*(180)/(\pi) \\ \theta=57.3^0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/aw32afjgxeausmib9o1vzo5xyxmnkm9vak.png)
Then we will apply the formula for calculating the length of an arc;
![C=(\theta)/(360)*2\pi r](https://img.qammunity.org/2023/formulas/mathematics/high-school/jpyuodd62jlkqi4ktsvncve1kj31atpe2f.png)
Substituting the value of the angle and the radius.
![\begin{gathered} C=(57.3)/(360)*2\pi*20ft \\ C=(57.3)/(360)*40\pi ft \\ C=20ft \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/rk59obc8pss1fqmxlx9uv2vkniqvhrci4o.png)
Therefore, the length of the arc AC is;
![AC=20ft](https://img.qammunity.org/2023/formulas/mathematics/high-school/6ubqo2yxknoi6cwsg5baps2nna0moacurh.png)