77.8k views
5 votes
Describe the nature of the roots of this equation.2x^2-x+1=0O A. Two complex rootsO B. One real, double rootO C. Two real, rational rootsO D. Two real, irrational roots

User Kimy BF
by
5.1k points

1 Answer

5 votes

ANSWER

A. Two complex roots

Step-by-step explanation

We want to describe the roots of the equation:


2x^2\text{ - x + 1 = 0}

Let us solve it with the quadratic formula.

For a quadratic equation:


ax^2\text{ + bx + c = 0}

The roots are gotten by using the formula:


x\text{ = }\frac{-b\text{ }\pm\sqrt[]{b^2-4ac}}{2a}

So, we have that:

a = 2, b = -1, c = 1

So:


\begin{gathered} x\text{ = }\frac{-(-1)\text{ }\pm\sqrt[]{(-1)^2\text{ - 4(2)(1)}}}{2\cdot2}=\frac{1\text{ }\pm\sqrt[]{1\text{ - 8}}}{4} \\ x\text{ = }\frac{1\text{ }\pm\sqrt[]{-7}}{4}\text{ = }\frac{1\text{ }\pm\text{ }\sqrt[]{7}\cdot\text{ }\sqrt[]{-1}}{4} \\ \Rightarrow\text{ x = }\frac{1\text{ + }\sqrt[]{7}i}{4}\text{ and }\frac{1\text{ - }\sqrt[]{7}i}{4} \end{gathered}

As we can see, the two roots of the equation are complex.

User Ara Yeressian
by
5.0k points