We are given the following numbers in scientific notation:

In order to determine the quotient between these two numbers we will first rewrite as a fraction, like this:

Now we will use the following property of exponent for the powers of ten:

Applying the property we get:

Solving the operation we get:

Now we solve the quotient:

We can further simplify the answer by bringing the 10 to the denominator and changing the sign of its exponent:

Therefore, the quotient between the two numbers is 0.251.