Given:
![(3\pi)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/ba7pqpauo7cco6vv2n8hi4enxbr592vq9i.png)
Required: Equivalent in degree
Solution:
Let the equivalent of
![(3\pi)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/ba7pqpauo7cco6vv2n8hi4enxbr592vq9i.png)
be represented as X.
Thus,
![(3\pi)/(4)\text{ = X}](https://img.qammunity.org/2023/formulas/mathematics/college/k2sd2ns6320fpgs5o0n0u8ssq20h09sdox.png)
But
![\pi radians=180^(\circ)](https://img.qammunity.org/2023/formulas/mathematics/college/b4swxdj1gonxxk25r97d202m7xdlo2ugnn.png)
This implies that
![\begin{gathered} \pi=180^(\circ) \\ (3\pi)/(4)\text{ = X} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ksmlqevb6ok3isg5glhh2eqelrfwxs6hd4.png)
By cross-multiplication, we have
![\begin{gathered} \pi\text{ }*\text{ X = 180 }*\text{ }(3\pi)/(4) \\ X\pi\text{ = }(180*3\pi)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/x98v40b5168rhor0jia1suvjett8j4xd7g.png)
Divide both sides by the coefficient of X.
The coefficient of X is π.
Thus,
![\begin{gathered} X\text{ = }(180*3\pi)/(4)*(1)/(\pi) \\ \Rightarrow X\text{ = 135} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1nnyjxalal2myns2vszmg2nxd3xxq1o3ti.png)
Hence, the equivalent of
![(3\pi)/(4)\text{ radians}](https://img.qammunity.org/2023/formulas/mathematics/college/w8f7zbvyolqsyjdjxkwsvikrsc401nlw8b.png)
is 135°