Ok, so
Here we have this linear transformation as follows:
![T\colon(x,y)=(x+4,y+2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/6ozqywe23a9os9fo4mjmxo28xrb9tveslv.png)
And we're going to translate the point A:
![A(-2,3)](https://img.qammunity.org/2023/formulas/mathematics/college/gvp3j65vhjqrnfld4cjjpu34lvtunwmzu0.png)
This is: (We replace the values of x and y of the point A in the transformation):
![\begin{gathered} T\colon(-2,3)=(-2+4,3+2) \\ T\colon(-2,3)=(2,5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/eobxiv9btgikxc4jerbjpy1uhe1zlrdqx7.png)
The point A translated will give us a new point B, which is (2 , 5) (After applying the transformation).
Now, let's find the distance between A (-2,3) and B (2,5).
Remember that the distance between two points:
![\begin{gathered} A(x_1,y_1) \\ B(x_(2,)y_2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/qp257fpoww5nr1feyep5lrqhblvqok843o.png)
Can be found applying the following formula:
![D=\sqrt[]{(y_2-y_1)^2+(x_2-x_1)^2}](https://img.qammunity.org/2023/formulas/mathematics/college/bn18956xdzpj56va064oiuu2531qoyd8xa.png)
Replacing our values:
![\begin{gathered} D=\sqrt[]{(5-3)^2+(2-(-2))^2} \\ D=\sqrt[]{(2)^2+(2+2)^2} \\ D=\sqrt[]{4+16} \\ D=\sqrt[]{20} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/x62rilyh3g8bunzuff80555z1it5bjmq0t.png)
Therefore, the distance between the points A and B, is √(20) units. (This is, approximately, 4.47)