In general, the simple interest formula is
![A=P(1+rt)](https://img.qammunity.org/2023/formulas/mathematics/high-school/cq9n3xjp7mzdthgt3k38triptucqu3enep.png)
Where t is given in years.
And the interest is given by
![\begin{gathered} I=A-P=P((1+rt)-1)=P(rt) \\ \Rightarrow I=P(rt) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/m15u92gbuz28xqgscgpmtdqi3i2ua0lahj.png)
Let B the initial amount Lisa invested in the 10% interest account and C the amount she invested in the 8% account.
Therefore,
![\begin{gathered} B+C=30000 \\ I_B+I_C=2640 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/g3hd49urkjuglthj68ukzehduxrnbv3wit.png)
Expanding the second equation,
![\begin{gathered} \Rightarrow B(10\%\cdot1)+C(8\%\cdot1)=2640 \\ \Rightarrow B(0.10)+C(0.08)=2640 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hr4v0ks2ba61g1op1quq9pchol045qmwys.png)
The system of equations becomes
![\begin{gathered} B+C=30000 \\ \text{and} \\ 0.1B+0.08C=2640 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kdb54oy76es0mrol9r3sl23w2udpm7dsol.png)
From the first equation, B=30000-C. Substitute into the second equation as shown below
![\begin{gathered} B=30000-C \\ \Rightarrow0.1(30000-C)+0.08C=2640 \\ \Rightarrow3000-0.1C+0.08C=2640 \\ \Rightarrow C=(360)/(0.02)=18000 \\ \Rightarrow C=18000 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pwu2neb8ysqvzo6h5mnk5tw8mlof2yr5nt.png)
And
![\begin{gathered} C=18000 \\ \Rightarrow B=30000-18000=12000 \\ \Rightarrow B=12000 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/81iiwui66lsdsj7ofifrqgo8ddzca8wfd2.png)
Therefore, she invested $12000 in the 10% account and $18000 in the 8% account.