Answer:
The height of the triangle is 3 inches.
Explanation:
Given:
![\begin{gathered} \text{Base of the triangle}=3(2)/(5)\text{ inches} \\ \text{Area of the triangle}=5(1)/(10)\text{ inches} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/q7kpo45oi7t2ydt248lakgjpku7qyel88w.png)
We change the mixed fractions to improper fractions below:
![\begin{gathered} \text{Base of the triangle}=3(2)/(5)=((5*3)+2)/(5)=(17)/(5)\text{ inches} \\ \text{Area of the triangle}=5(1)/(10)=((10*5)+1)/(10)=(51)/(10)\text{ inches} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yx2u8sge5szhsleyx6qe8yogei1139y1v6.png)
We want to find the height of the triangle.
Recall that the area of a triangle is calculated using the formula below.
![\text{Area}=(1)/(2)*\text{Base}* Height](https://img.qammunity.org/2023/formulas/mathematics/college/u17p9asot512azajmf6s5x6cdx3gk5m1kg.png)
Substitute the given values:
![(51)/(10)=(1)/(2)*(17)/(5)*\text{Height}](https://img.qammunity.org/2023/formulas/mathematics/college/jrrgci9sl71cdz685tc57s4bqqg0ud58tc.png)
Multiply the numerators and denominators on the right side of the equation.
![\begin{gathered} (51)/(10)=(1*17)/(2*5)*\text{Height} \\ (51)/(10)=\frac{17*\text{Height}}{10} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/di934rbbok8axmup4uy8d3sfxyek9hhxu1.png)
Multiply both sides by 10.
![\begin{gathered} (51)/(10)*10=\frac{17*\text{Height}}{10}*10 \\ \implies51=17*\text{Height} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ite2bfbm2n9r40lwssjogh96f58p32ag65.png)
To solve for the height, divide both sides by 17.
![\begin{gathered} (51)/(17)=\frac{17*\text{Height}}{17} \\ 3=\text{Height} \\ \text{Height = 3 inches} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/c0c1uyejxwpad1nj4igih0c11i7c8br88t.png)
The height of the triangle is 3 inches.