parallel
y=2x+11
Step-by-step explanation
Step 1
find the equation of the line:
two lines are parellel if the slope is the same for both,so
let
![y_1=2x+6](https://img.qammunity.org/2023/formulas/mathematics/college/8qkqwx1fz0sbs04zvqgpobxon9a88znuc9.png)
this function is written in slope-intercept form y=mx+b, where m is the slope
![\begin{gathered} y=2x+6\rightarrow y=mx+b \\ \text{hence} \\ slope_1=m_1=2 \\ so \\ slope_1=slope_2=m_2=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fcg65isctuozak87wp021zwo4zl8fowpjc.png)
it means the slope of the line we are looking for is 2
Step 2
now,let's find the equation of the line
to do that, we can use this formula:
![\begin{gathered} y-y_1=m(x-x_1) \\ \text{where m is the slope} \\ \text{and (x}_1,y_1)\text{ is a point from the line} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5fwdtvple9j4nufo37chnrh10xp8d9r3qc.png)
then,let
![\begin{gathered} \text{slope}=2 \\ \text{passing point=(-3,5)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/opm91696t7nt4xqrd87pyn2f05ohv79sh0.png)
Now,replace in the formula and solve for y
![\begin{gathered} y-y_1=m(x-x_1) \\ y-5=2(x-(-3)) \\ y-5=2(x+3) \\ y-5=2x+6 \\ \text{add 5 in both sides} \\ y-5+5=2x+6+5 \\ y=2x+11 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pym37n777tv5636brrc4mt1ucqkwx3x6nm.png)
so, the answer is
![y=2x+11](https://img.qammunity.org/2023/formulas/mathematics/college/ws1kv3q7mghud7pdzme11ibucubpajywks.png)
I hope this helps you