Answer:
(a)26.1 bulb per month on average
(b)6.5
Step-by-step explanation:
The number of burnt bulbs recorded over 10 months is given below:

Part A
To find the average, add up all the numbers and divide by 10.

The average number of bulbs that burn out each month is 26.1.
Part B
To find the standard deviation, we use the formula below:
![\begin{gathered} \text{Standard Deviation}=\sqrt[]{\frac{\sum (x-\bar{x})^2}{n-1}} \\ \bar{X}=26.1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ifo4vvvaxxniy6uh03uyg6akb32nzpy3dz.png)
The data is presented in the table below:
From the table above:

Therefore:
![\begin{gathered} \text{Standard Deviation}=\sqrt[]{\frac{\sum (x-\bar{x})^2}{n-1}}=\sqrt[]{(378.9)/(10-1)} \\ =\sqrt[]{(378.9)/(9)} \\ =\sqrt[]{42.1} \\ =6.5\text{ (to 1 decimal place)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/e31djgzs8plnodwjdkazb2ybsb1w2kcofc.png)
The standard deviation is 6.5.