1. it is not an arithmetic sequence
2.arithmetic sequence
![\begin{gathered} \text{term}_5=11.25 \\ \text{term}_6=13.75 \\ \text{term}_7=16.25 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/c188j0scgjsx8tmgboto4vltyyybuj356n.png)
Step-by-step explanation
Step 1
find the common difference for the sequence.
![\begin{gathered} -1,2,-3,4 \\ \text{term}_1=-1 \\ \text{term}_2=2 \\ \text{term}_3=-3 \\ term_4=-4 \\ term2-term1=2-(-1)=2+2=4 \\ \text{term}3-\text{term}2=-3-2=-5 \\ \text{term}4-\text{term}3=-4-(-3)=-4+3=-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ozrvi7ztu6gzmgmrn048zdzpl84xail1lo.png)
there is no common difference , so this is not an arithmetic sequence
Step 2
2.
find the common difference
![\begin{gathered} 1.25,3.75,6.25,8,75 \\ \text{term}1=1.25 \\ \text{term}2=3.75 \\ \text{term}3=6.25 \\ \text{term}4=8.75 \\ \text{differences} \\ \text{term}2-\text{term}1=3.75-1.25=2.5 \\ \text{term}3-\text{term}2=6.25-3.75=2.5 \\ \text{term}4-\text{term}2=8.75-6.25=2.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lb7ngbu07whdyf7ilvcwv52gh5f0gl1g9f.png)
so, the common difference is 2.5, in other words, it means you have to add 2.5 to obtain the next term
Step 2.1
now, let's find the next three terms
![\begin{gathered} \text{rule} \\ \text{term}_(n+1)=term_(n+2.5) \\ \text{then} \\ \text{term}5=\text{term}4+2.5 \\ \text{term}5=8.75+2.5=11.25 \\ term6=11.25+2.5=13.75 \\ \text{term}7=13.75+2.5=16.25 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9rj1vbxzltqe0pb7rwm2u1ru978r48dl33.png)
I hope this helps you