a. Horizontal range is given by,
![Range=(u^2sin2\theta)/(g)](https://img.qammunity.org/2023/formulas/physics/college/k9g9s1y0guvtqh4bbxwtm22e4hc1a5l455.png)
where u is the initial speed, and theta is the angle of projection,
Now velocity vector as a function of time is given by,
![\vec{v}(t)=(ucos\theta)\hat{i}+(usin\theta-gt)\hat{j}](https://img.qammunity.org/2023/formulas/physics/college/2lrjawl2u1978p54tlhvapyu1fact8vwca.png)
Given,
![\begin{gathered} \vec{v}(3.3s)=8.6\text{ }\hat{i}+4.7\text{ }\hat{j} \\ \Rightarrow ucos\theta=8.6,usin\theta-(10)(3.3)=4.7 \\ \Rightarrow ucos\theta=8.6,usin\theta=37.7 \\ Dividing, \\ \Rightarrow tan\theta=(37.7)/(8.6)=4.3837 \\ \Rightarrow\theta=77.15\degree \\ Hence \\ ucos77.15\degree=8.6 \\ \Rightarrow u=(8.6)/(0.2224)=38.67\text{ m/s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/n49n81pkrhcedfr6uun3idktsl09ibxzjh.png)
And so, the horizontal range will be,
![Range=((38.67)^2sin(154.3\degree))/((10))=64.85\text{ m}](https://img.qammunity.org/2023/formulas/physics/college/w4dlsahse9zu2hds8auuq303lynxch83xt.png)
b. Maximum height reached by a projectile is given by,
![\begin{gathered} H_(max)=(u^2sin^2\theta)/(2g) \\ \Rightarrow H_(max)=((38.67)^2sin^2(77.15\degree))/((2)(10))=71.07\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/nyoqticeqztnh2m5h9hrixkiwzup7qh83i.png)
c. Now time of flight of the projectile is given by,
![t_(flight)=(2usin\theta)/(g)=((2)(38.67)sin(77.15\degree))/((10))=7.54\text{ s}](https://img.qammunity.org/2023/formulas/physics/college/b2e38hi01x0h77gw06hd1esjmomvem3x2z.png)
this is the time at which the projectile strikes the ground, and so its velocity then would be,
![\begin{gathered} \vec{v}(7.54s)=8.6\text{ }\hat{i}+(37.7-10*7.54)\hat{j} \\ \Rightarrow\vec{v}(7.54s)=8.6\text{ }\hat{i}-37.7\text{ }\hat{j} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/yy5g2uhpijo15dq2dluksfmnhcz8l8fznl.png)
As expected the vertical component of velocity has just been flipped, and therefore its speed will be same as its initial speed i.e.
![v_{strikes\text{ }ground}=u=38.67\text{ m/s}](https://img.qammunity.org/2023/formulas/physics/college/ao2puhq3iygixzit3bd9lxbk95yhf6khyx.png)
d. Below the horizontal, let the angle be φ, then
![tan\varphi=-(v_y)/(v_x)](https://img.qammunity.org/2023/formulas/physics/college/7kjx7jpcrd73i0pdwa92ginc2aa685ic4w.png)
extra -ve sign since its below the horizontal, when the projectile strikes the ground,
![\begin{gathered} v_y=-37.7\text{ m/s} \\ v_x=8.6\text{ m/s} \\ \Rightarrow tan\varphi=-((-37.7))/(8.6)=(37.7)/(8.6)=tan\theta \\ \Rightarrow\varphi=\theta \\ \Rightarrow\varphi=77.15\degree \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/vwpusdtc8449xtqqylylcq3dmc71egcyy0.png)
Result: a. 64.85 m, b. 71.05 m, c. 38.67 m/s, d. 77.15°.