Answer:
$3.5
Step-by-step explanation:
Let the cost of 1 kg of apples = x
Let the cost of 1 kg of bananas =y
Claire bought 5 kg of apples and 2 kg of bananas and paid altogether $22.
![5x+2y=22](https://img.qammunity.org/2023/formulas/mathematics/college/by5useyinm3df5chy2eueiqfmovvo1plrz.png)
Dale bought 4 kg of apples and 6 kg of bananas and paid altogether $33.
![4x+6y=33](https://img.qammunity.org/2023/formulas/mathematics/college/4ogb8pyfnibznyt3gzbl46zb18ars1dn3j.png)
We set up the system of linear equations as a matrix below:
![\begin{bmatrix}{5} & {2} & \\ {4} & {6} & {}{}\end{bmatrix}\begin{bmatrix}{x} & \\ {y} & {}{}\end{bmatrix}=\begin{bmatrix}{22} & \\ {33} & {}{}\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/college/55febpdqmbqd70tsuz721p0y4ht8bfnufj.png)
We then solve for the variables x and y as follows.
![\begin{gathered} \begin{bmatrix}{x} & \\ {y} & {}{}\end{bmatrix}=\begin{bmatrix}{5} & {2} & \\ {4} & {6} & {}{}\end{bmatrix}^(-1)\begin{bmatrix}{22} & \\ {33} & {}{}\end{bmatrix} \\ =(1)/(30-8)\begin{bmatrix}{6} & {-2} & \\ {-4} & {5} & {}{}\end{bmatrix}\begin{bmatrix}{22} & \\ {33} & {}{}\end{bmatrix} \\ =(1)/(22)\begin{bmatrix}{6} & {-2} & \\ {-4} & {5} & {}{}\end{bmatrix}\begin{bmatrix}{22} & \\ {33} & {}{}\end{bmatrix} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2or650rilu5x92epge8x78favmo75q07io.png)
We proceed to simplify further.
![\begin{gathered} =\begin{bmatrix}{(6)/(22)} & {-(2)/(22)} & \\ {-(4)/(22)} & {(5)/(22)} & {}{}\end{bmatrix}\begin{bmatrix}{22} & \\ {33} & {}{}\end{bmatrix} \\ =\begin{bmatrix}{(6)/(22)*22-(2)/(22)*33} & {} & \\ {(-4)/(22)*22+(5)/(22)*33} & & {}{}\end{bmatrix} \\ =\begin{bmatrix}{6-3} & {} & \\ {-4+7.5} & & {}{}\end{bmatrix} \\ =\begin{bmatrix}{3} & {} & \\ {3.5} & & {}{}\end{bmatrix} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ezi64kjj8bkyshvxbpsxb2itfeh4pds67x.png)
Therefore:
x=3 and y=3.5.
The cost of 1 kg of bananas is $3.5.