Answer:
The intercept points are:
![\begin{gathered} (-3,0) \\ (-2,0) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/c7s9zjushcc5cqiqsu9tfg44slpa4721xp.png)
The vertex is:
![(-(5)/(2),-(1)/(4))](https://img.qammunity.org/2023/formulas/mathematics/college/1x3kiy8lqano8catrixvjzcqxpgsj90y8w.png)
Explanation:
To find the intercept points, we equal the function to zero and solve for x, as following:
![\begin{gathered} x^2+5x+6=0 \\ \rightarrow(x+3)(x+2)=0 \\ \\ \rightarrow x+3=0\Rightarrow x_1=-3 \\ \\ \rightarrow x+2=0\Rightarrow x_2=-2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pr9yjo60uhnmoqff938i8jcjfa5n5rj5td.png)
Now, we know that the intercept points have an x-value of -3 and -2. Since we're talking about intercepts, the y-values will be 0.
Therefore, we can conlcude that the intercept points are:
![\begin{gathered} (-3,0) \\ (-2,0) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/c7s9zjushcc5cqiqsu9tfg44slpa4721xp.png)
The vertex of any given quadratic function in the form:
![f(x)=ax^2+bx+c](https://img.qammunity.org/2023/formulas/mathematics/college/gtwfur36jgufas40j4egf3v22iz0dzre6e.png)
is:
![(-(b)/(2a),f(-(b)/(2a)))](https://img.qammunity.org/2023/formulas/mathematics/college/4qlfubg1e0n4exs3dv2kts1sev7242teyu.png)
This way, for the given function, we'll have that the vertex point is:
![(-(5)/(2),-(1)/(4))](https://img.qammunity.org/2023/formulas/mathematics/college/1x3kiy8lqano8catrixvjzcqxpgsj90y8w.png)