step 1
Find out the equation of the volume of the box
![\begin{gathered} V=x^2h \\ V=171,500\text{ cm}^3 \\ 171,500=x^2h \\ h=(171,500)/(x^2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6d4814ifevvic02zxsehphpqat9jtbv06b.png)
step 2
Find out the expression for the surface area
The surface area is given by the expression
![A=x^2+4xh](https://img.qammunity.org/2023/formulas/mathematics/college/t6uyb2r5lea8o3zz1mrc7e8fe5l5j1akmp.png)
substitute the value of h
![\begin{gathered} A=x^2+4x(171,500)/(x^2) \\ simplify \\ A(x)=x^2+(686,000)/(x) \\ \\ A(x)=(x^3+686,000)/(x) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/avacurhssmggxp4wc8fizarzhl74xo9zq8.png)
step 3
Find out the derivative A'(x)
![A^(\prime)(x)=2x-(686,000)/(x^2)](https://img.qammunity.org/2023/formulas/mathematics/college/uw4cz0w8p6mc4dk23e5eci4t33s9hig1ba.png)
step 4
Equate the derivative to zero
![\begin{gathered} 2x-(686,000)/(x^2)=0 \\ 2x=(686,000)/(x^2) \\ \\ 2x^3=686,000 \\ x^3=343,000 \\ x=70 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kw6e5x2r19pgjjhkuanwc5q5ota6s4od8x.png)
A'(x)=0 when x=70
step 5
Find out the second derivative A''(x)
![A^(\prime)^(\prime)(x)=2+(1,372,000)/(x^3)](https://img.qammunity.org/2023/formulas/mathematics/college/klgzfjbqlz87yk52w0q445o4l7z5x2gjg7.png)
Evaluate the second derivative for x=70
![\begin{gathered} A^(\prime)^(\prime)(x)=2+(1,372,000)/((70)^3) \\ A^(\prime)^(\prime)(x)\text{ is positive} \\ that\text{ means} \\ The\text{ value of A\lparen x\rparen i}s\text{ a maximum for x=70 cm} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/av8ey9h7m8j8l7rm7ldjzoh99fqdmajbjc.png)