67.6k views
2 votes
Evaluate ∫(15x2+x2‾‾√34) dx. Here C is the constant of integration.

Evaluate ∫(15x2+x2‾‾√34) dx. Here C is the constant of integration.-example-1

1 Answer

2 votes

We use the following formula for integration:


\int x^ndx=(x^(n+1))/(n+1)+C

We have the following integral:


\int(15x^2+\frac{\sqrt[3]{x^2}}{4})dx

Separate into two integrals:


\int(15x^2+\frac{\sqrt[3]{x^2}}{4})dx=\int15x^2dx+\int\frac{\sqrt[3]{x^2}}{4}dx

Calculate the first integral. Take the coefficient out of the integral:


\int15x^2dx=15\int x^2dx

Apply the integration formula:


\int15x^2dx=15(x^3)/(3)+C=5x^3+C

Calculate the second integral. Take the coefficient out of the integral:


\int\frac{\sqrt[3]{x^2}}{4}dx=(1)/(4)\int\sqrt[3]{x^2}dx

Express the radical as a fractional exponent:


(1)/(4)\int\sqrt[3]{x^2}dx=(1)/(4)\int x^(2/3)dx

Apply the integration formula:


(1)/(4)\cdot(x^(5/3))/(5/3)+C=(3)/(20)\sqrt[3]{x^5}+C

The total integral is:


\int(15x^2+\frac{\sqrt[3]{x^2}}{4})dx=5x^3+(3)/(20)\sqrt[3]{x^5}+C

User RP The Designer
by
4.5k points